
© 2009 Cigital

Software Security Testing:
Seeking security in an insecure world

Gary McGraw, Ph.D.
CTO, Cigital

http://www.cigital.com

© 2009 Cigital

Software security is getting harder

The Trinity of Trouble
  Connectivity

  The Internet is everywhere
and most software is on it

  Complexity
  Networked, distributed,

mobile code is hard
  Extensibility

  Systems evolve in
unexpected ways and are
changed on the fly

This simple interface… …is this complex program .NET 

The network is
the computer. 

© 2009 Cigital

Old school security is reactive
  Defend the “perimeter” with a

firewall
  To keep stuff out

  Promulgate “penetrate and
patch”

  “Review” products when
they’re complete
  Throw it over the wall

testing
  Too much weight on

penetration testing
  Over-rely on security functions

  “We use SSL”

 The “network guy with keys”
does not really understand
software testing. Builders are
only recently getting involved in
security.

© 2009 Cigital

Making software behave is hard
  Can you test in quality?
  How do you find (adaptive) defects in code?
  What about bad guys doing evil on purpose?

  What’s the difference between security testing and
functional testing?

  How can you analyze security design?
  How can you codify non-functional, emergent

requirements like security?
  Can you measure security?

© 2009 Cigital

Software vulnerability growth

1090

2437

4129 3784 3780

5690

8064
7236

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2000 2001 2002 2003 2004 2005 2006 2007

Software Vulnerabilities

© 2009 Cigital

The classic security tradeoff

Windows Complexity

0
5

10
15
20
25
30
35
40
45

Win
3.1

(1990)

Win
NT

(1995)

Win 95
(1997)

NT 4.0
(1998)

Win 98
(1999)

NT 5.0
(2000)

Win
2K

(2001)

XP
(2002)

M
ill

io
ns

 o
f L

in
es

Software Vulnerabilities

1090

2437

4129 3784 3780

5690

8064

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

2000 2001 2002 2003 2004 2005 2006

© 2009 Cigital

Security problems are complicated
IMPLEMENTATION BUGS

  Buffer overflow
  String format
  One-stage attacks

  Race conditions
  TOCTOU (time of check to

time of use)
  Unsafe environment variables
  Unsafe system calls

  System()
  Untrusted input problems

ARCHITECTURAL FLAWS
  Misuse of cryptography
  Compartmentalization

problems in design
  Privileged block protection

failure (DoPrivilege())
  Catastrophic security failure

(fragility)
  Type safety confusion error
  Insecure auditing
  Broken or illogical access

control (RBAC over tiers)
  Method over-riding problems

(subclass issues)
  Signing too much code

50% 50%

© 2009 Cigital

Security = breaking stuff + building stuff
  Security requires two hats

  Offense and defense
  Building and breaking

  Security design based on
software engineering

  Security analysis based on
attack

  Testing has two flavors
  Functional security testing

(constructive)
  Risk-based security testing

(destructive)

© 2009 Cigital

  Four domains
  Twelve practices
  See informIT article
  http://www.informit.com/articles/article.aspx?p=1271382

A Software Security Framework

© 2009 Cigital

Security as Knowledge Intensive

© 2009 Cigital

Knowledge: 48 Attack Patterns
  Make the Client Invisible
  Target Programs That Write to Privileged OS Resources
  Use a User-Supplied Configuration File to Run

Commands That Elevate Privilege
  Make Use of Configuration File Search Paths
  Direct Access to Executable Files
  Embedding Scripts within Scripts
  Leverage Executable Code in Nonexecutable Files
  Argument Injection
  Command Delimiters
  Multiple Parsers and Double Escapes
  User-Supplied Variable Passed to File System Calls
  Postfix NULL Terminator
  Postfix, Null Terminate, and Backslash
  Relative Path Traversal
  Client-Controlled Environment Variables
  User-Supplied Global Variables (DEBUG=1, PHP

Globals, and So Forth)
  Session ID, Resource ID, and Blind Trust
  Analog In-Band Switching Signals (aka “Blue Boxing”)
  Attack Pattern Fragment: Manipulating Terminal Devices
  Simple Script Injection
  Embedding Script in Nonscript Elements
  XSS in HTTP Headers
  HTTP Query Strings

  User-Controlled Filename
  Passing Local Filenames to Functions That Expect a

URL
  Meta-characters in E-mail Header
  File System Function Injection, Content Based
  Client-side Injection, Buffer Overflow
  Cause Web Server Misclassification
  Alternate Encoding the Leading Ghost Characters
  Using Slashes in Alternate Encoding
  Using Escaped Slashes in Alternate Encoding
  Unicode Encoding
  UTF-8 Encoding
  URL Encoding
  Alternative IP Addresses
  Slashes and URL Encoding Combined
  Web Logs
  Overflow Binary Resource File
  Overflow Variables and Tags
  Overflow Symbolic Links
  MIME Conversion
  HTTP Cookies
  Filter Failure through Buffer Overflow
  Buffer Overflow with Environment Variables
  Buffer Overflow in an API Call
  Buffer Overflow in Local Command-Line Utilities
  Parameter Expansion
  String Format Overflow in syslog()

© 2009 Cigital

Attack pattern 1:
Make the client invisible

  Remove the client from the
communications loop and
talk directly to the server

  Leverage incorrect trust
model (never trust the
client)

  Example: hacking browsers
that lie (opera cookie foo)

© 2009 Cigital

Attacker’s toolkit: buffer overflow foo
  Find targets with static analysis
  Change program control flow

  Heap attacks
  Stack smashing
  Trampolining
  Arc injection

  Particular examples
  Overflow binary resource

files (used against
Netscape)

  Overflow variables and
tags (Yamaha MidiPlug)

  MIME conversion fun
(Sendmail)

  HTTP cookies (apache)

  Trampolining past a canary

Local Variable: Buffer B
Local Variable: Pointer A
Local Variable: Buffer A

Function arguments
Return Address
Canary Value
Frame Pointer

© 2009 Cigital

Warning! Knowledge can be easily misused
Software security

  Requires input into design
and implementation

  High expertise
  Design software to be

secure
  Build secure code
  Security analysis
  Security testing
  Inside Out

“Application security”
  Works for COTS software
  Low expertise
  Protect installed software

from harm
  Protection against malicious

code
  Policy issues
  Outside In

badness-ometer

© 2009 Cigital

Top 11 reasons why top 10 lists don’t work
1.  Executives don’t care about

technical bugs
2.  Too much focus on bugs
3.  Vulnerability lists help

auditors more than
developers

4.  One person’s bug is another
person’s yawner

5.  Using bug parade lists for
training leads to awareness
but does not educate.

6.  Bug lists change with the
prevailing technology winds

7.  Top ten lists mix levels
8.  Automated tools can find

bugs---let them
9.  Metrics built on top ten lists are

misleading
10.  When it comes to testing,

security requirements are more
important than vulnerability
lists.

11.  Ten is not enough.

http://www.informit.com/articles/article.aspx?p=1322398

© 2009 Cigital

BSIMM-Ten surprising things
1.  Bad metrics hurt
2.  Secure-by default

frameworks
3.  Nobody uses

WAFs
4.  QA can’t do

software security
5.  Evangelize over

audit

6.  ARA is hard
7.  Practitioners don’t

talk attacks
8.  Training is

advanced
9.  Pen testing is

diminishing
10.  Fuzz testing

  http://www.informit.com/articles/article.aspx?p=1315431

© 2009 Cigital

Attackers are Software People

© 2009 Cigital

Attackers do not distinguish bugs and flaws
  Both bugs and flaws

lead to vulnerabilities
that can be exploited

  Attackers write code to
break code

  Defenders are network
operations people
  Code?! What code?

© 2009 Cigital

The attacker’s toolkit
  The standard attacker’s toolkit has lots of (software

analysis) stuff
  Disassemblers and decompilers
  Binary scanners
  Control flow, data flow, and coverage tools
  APISPY32
  Breakpoint setters and monitors
  Buffer overflow kits
  Shell code, payloads (multi-platform)
  Rootkits (kernel, hardware)

© 2009 Cigital

Attacker’s toolkit: other miscellaneous tools
  Debuggers (user-mode)
  Kernel debuggers

  SoftIce
  Fault injection tools

  FUZZ
  Failure simulation tool
  Hailstorm
  Holodeck

  Boron tagging
  The “depends” tool
  Grammar rewriters

© 2009 Cigital

Is FUZZ good?
  Wisconsin academics invent

the notion of sending
random noise to UNIX
utilities
  Fuzz I: 1990
  Fuzz II: ten years later

  Fifteen years later, security
people hit on the same idea

  FUZZ can be useful
  SPIKE
  Peachfuzz
  Mangle (HTML)
  FileFuzz
  beStrorm
  Codenomicon

  White box testing is better

© 2009 Cigital

Breaking stuff is important
  Learning how to think like

an attacker is essential
(especially for good testing)

  Think hard about the
“can’ts” and “won’ts”

  Do not shy away from
teaching attacks
  Engineers learn from

stories of failure
  Testers must deeply

understand how things
break

© 2009 Cigital

Resources on security testing
  Building Secure Software

(Viega/McGraw)

  Writing Secure Code (Howard/
LeBlanc)

  How to Break Software
Security (Whittaker/Thompson)

  Web Security Testing
Cookbook (Hope/Walther)

© 2009 Cigital

Web Security Testing Cookbook

© 2009 Cigital

What it ain’t

© 2009 Cigital

What it IS
  Reference and job aid for web testers

  Exploratory testing
  Regression testing
  Automated testing
  Unit testing

  Starts really basic
  Ends rather complicated

© 2009 Cigital

Table of Contents
1.  Introduction
2.  Installing Free Tools
3.  Basic Observation
4.  Web-Oriented Data Encoding
5.  Tampering with Input
6.  Automated Bulk Scanning
7.  Automating Tasks with cURL
8.  Automating Tasks with

LibWWWPerl
9.  Seeking Design Flaws
10.   Attacking AJAX
11.   Manipulating Sessions
12.   Multifaceted Tests

© 2009 Cigital

Example: Login to eBay

  Series of
commands

  Build up state/
cookies

  Check for
username in output

${CURL} -s -L -A "${UA}" -c "${JAR}"\
 -b "${JAR}" -e ";auto” \
 -d MfcISAPICommand=SignInWelcome \
 -d siteid=0 -d co_partnerId=2 -d UsingSSL=1 \
 -d ru= -d pp= -d pa1= -d pa2= -d pa3= \
 -d i1=-1 -d pageType=-1 -d rtmData= \
 -d userid="${USER}" \
 -d pass="${PASS}" \
 -o "step-${step}.html" \
 "https://signin.ebay.com/ws/..."

if [$? = 0]; then
 step=$step+1
 echo -n "OK] [${step} "
 else
 echo "FAIL]"
 exit 1
 fi

© 2009 Cigital

Other topics
  LDAP injection
  Zip of death
  Billion laughs
  Pathological XML
  Malicious cookies

  All of these are
scripted

  All are repeatable
  All can be part of a

routine QA process

© 2009 Cigital

Stuff that Works for Cigital

© 2009 Cigital

Three pillars of software security
  Risk management framework
  Touchpoints
  Knowledge

© 2009 Cigital

Software security touchpoints

© 2009 Cigital

Touchpoint: Abuse cases
  Use cases formalize normative behavior (and

assume correct usage)
  Describing non-normative behavior is a good idea

  Prepare for abnormal behavior (attack)
  Misuse or abuse cases do this
  Uncover exceptional cases

  Leverage the fact that designers know more about
their system than potential attackers do

  Document explicitly what the software will do in
the face of illegitimate use

  Abuse cases are great
 for test planning

© 2009 Cigital

Touchpoint: Security testing
  Test security functionality

  Cover non-functional requirements
  Security software probing

  Risk-based testing
  Use architectural risk analysis results to drive scenario-

based testing
  Concentrate on what “you can’t do”
  Think like an attacker
  Informed red teaming

© 2009 Cigital

Touchpoint: Risk-based testing
  Identify areas of potential risk in the system

  Requirements
  Design
  Architecture

  Use abuse cases to drive testing according to risk
  Build attack and exploit scenarios based on identified risks
  Test risk conditions explicitly

  Example: Overly complex object-sharing system in Java Card

© 2009 Cigital

Touchpoint: Penetration testing
  A very good idea since software is bound in an

environment
  How does the complete system work in practice?

  Interaction with network security mechanisms
  Firewalls
  Applied cryptography

  Penetration testing should be driven by risks
uncovered throughout the lifecycle

  Not a silver bullet!

© 2009 Cigital

Always: External review
  Having outside eyes look at

your system is essential
  Designers and

developers naturally get
blinders on

  External just means
outside of the project

  This is knowledge
intensive

  Outside eyes make it easier
to “assume nothing”
  Find assumptions, make

them go away

  Red teaming is a weak form
of external review
  Penetration testing is too

often driven by
outsidein perspective

  External review must
include architecture
analysis

  Security expertise and
experience really helps

© 2009 Cigital

Where to Learn More

© 2009 Cigital

informIT & Justice League

  www.informIT.com
  No-nonsense monthly security

column by Gary McGraw

  www.cigital.com/justiceleague
  In-depth thought leadership

blog from the Cigital Principals
  Scott Matsumoto
  Gary McGraw
  Sammy Migues
  Craig Miller
  John Steven

© 2009 Cigital

IEEE Security & Privacy Magazine + 2 Podcasts

  www.cigital.com/silverbullet
  www.cigital.com/realitycheck

  Building Security In
  Software Security Best

Practices column edited by
John Steven

  www.computer.org/security/bsisub/

© 2009 Cigital

Software Security: the book
  How to DO software security

  Best practices
  Tools
  Knowledge

  Cornerstone of the Addison-
Wesley Software Security
Series

  www.swsec.com

© 2009 Cigital

For more
  Cigital’s Software Security

Group invents and delivers
Software Quality Management

  WE NEED GREAT PEOPLE

  See the Addison-Wesley
Software Security series

  Send e-mail: gem@cigital.com

“So now, when we face a choice between
adding features and resolving security issues,
we need to choose security.”

-Bill Gates

