
© 2009 Cigital

Software Security Testing:
Seeking security in an insecure world

Gary McGraw, Ph.D.
CTO, Cigital

http://www.cigital.com

© 2009 Cigital

Software security is getting harder

The Trinity of Trouble
  Connectivity

  The Internet is everywhere
and most software is on it

  Complexity
  Networked, distributed,

mobile code is hard
  Extensibility

  Systems evolve in
unexpected ways and are
changed on the fly

This simple interface… …is this complex program .NET 

The network is
the computer. 

© 2009 Cigital

Old school security is reactive
  Defend the “perimeter” with a

firewall
  To keep stuff out

  Promulgate “penetrate and
patch”

  “Review” products when
they’re complete
  Throw it over the wall

testing
  Too much weight on

penetration testing
  Over-rely on security functions

  “We use SSL”

 The “network guy with keys”
does not really understand
software testing. Builders are
only recently getting involved in
security.

© 2009 Cigital

Making software behave is hard
  Can you test in quality?
  How do you find (adaptive) defects in code?
  What about bad guys doing evil on purpose?

  What’s the difference between security testing and
functional testing?

  How can you analyze security design?
  How can you codify non-functional, emergent

requirements like security?
  Can you measure security?

© 2009 Cigital

Software vulnerability growth

1090

2437

4129 3784 3780

5690

8064
7236

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2000 2001 2002 2003 2004 2005 2006 2007

Software Vulnerabilities

© 2009 Cigital

The classic security tradeoff

Windows Complexity

0
5

10
15
20
25
30
35
40
45

Win
3.1

(1990)

Win
NT

(1995)

Win 95
(1997)

NT 4.0
(1998)

Win 98
(1999)

NT 5.0
(2000)

Win
2K

(2001)

XP
(2002)

M
ill

io
ns

 o
f L

in
es

Software Vulnerabilities

1090

2437

4129 3784 3780

5690

8064

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

2000 2001 2002 2003 2004 2005 2006

© 2009 Cigital

Security problems are complicated
IMPLEMENTATION BUGS

  Buffer overflow
  String format
  One-stage attacks

  Race conditions
  TOCTOU (time of check to

time of use)
  Unsafe environment variables
  Unsafe system calls

  System()
  Untrusted input problems

ARCHITECTURAL FLAWS
  Misuse of cryptography
  Compartmentalization

problems in design
  Privileged block protection

failure (DoPrivilege())
  Catastrophic security failure

(fragility)
  Type safety confusion error
  Insecure auditing
  Broken or illogical access

control (RBAC over tiers)
  Method over-riding problems

(subclass issues)
  Signing too much code

50% 50%

© 2009 Cigital

Security = breaking stuff + building stuff
  Security requires two hats

  Offense and defense
  Building and breaking

  Security design based on
software engineering

  Security analysis based on
attack

  Testing has two flavors
  Functional security testing

(constructive)
  Risk-based security testing

(destructive)

© 2009 Cigital

  Four domains
  Twelve practices
  See informIT article
  http://www.informit.com/articles/article.aspx?p=1271382

A Software Security Framework

© 2009 Cigital

Security as Knowledge Intensive

© 2009 Cigital

Knowledge: 48 Attack Patterns
  Make the Client Invisible
  Target Programs That Write to Privileged OS Resources
  Use a User-Supplied Configuration File to Run

Commands That Elevate Privilege
  Make Use of Configuration File Search Paths
  Direct Access to Executable Files
  Embedding Scripts within Scripts
  Leverage Executable Code in Nonexecutable Files
  Argument Injection
  Command Delimiters
  Multiple Parsers and Double Escapes
  User-Supplied Variable Passed to File System Calls
  Postfix NULL Terminator
  Postfix, Null Terminate, and Backslash
  Relative Path Traversal
  Client-Controlled Environment Variables
  User-Supplied Global Variables (DEBUG=1, PHP

Globals, and So Forth)
  Session ID, Resource ID, and Blind Trust
  Analog In-Band Switching Signals (aka “Blue Boxing”)
  Attack Pattern Fragment: Manipulating Terminal Devices
  Simple Script Injection
  Embedding Script in Nonscript Elements
  XSS in HTTP Headers
  HTTP Query Strings

  User-Controlled Filename
  Passing Local Filenames to Functions That Expect a

URL
  Meta-characters in E-mail Header
  File System Function Injection, Content Based
  Client-side Injection, Buffer Overflow
  Cause Web Server Misclassification
  Alternate Encoding the Leading Ghost Characters
  Using Slashes in Alternate Encoding
  Using Escaped Slashes in Alternate Encoding
  Unicode Encoding
  UTF-8 Encoding
  URL Encoding
  Alternative IP Addresses
  Slashes and URL Encoding Combined
  Web Logs
  Overflow Binary Resource File
  Overflow Variables and Tags
  Overflow Symbolic Links
  MIME Conversion
  HTTP Cookies
  Filter Failure through Buffer Overflow
  Buffer Overflow with Environment Variables
  Buffer Overflow in an API Call
  Buffer Overflow in Local Command-Line Utilities
  Parameter Expansion
  String Format Overflow in syslog()

© 2009 Cigital

Attack pattern 1:
Make the client invisible

  Remove the client from the
communications loop and
talk directly to the server

  Leverage incorrect trust
model (never trust the
client)

  Example: hacking browsers
that lie (opera cookie foo)

© 2009 Cigital

Attacker’s toolkit: buffer overflow foo
  Find targets with static analysis
  Change program control flow

  Heap attacks
  Stack smashing
  Trampolining
  Arc injection

  Particular examples
  Overflow binary resource

files (used against
Netscape)

  Overflow variables and
tags (Yamaha MidiPlug)

  MIME conversion fun
(Sendmail)

  HTTP cookies (apache)

  Trampolining past a canary

Local Variable: Buffer B

Local Variable: Pointer A

Local Variable: Buffer A

Function arguments

Return Address

Canary Value

Frame Pointer

© 2009 Cigital

Warning! Knowledge can be easily misused
Software security

  Requires input into design
and implementation

  High expertise
  Design software to be

secure
  Build secure code
  Security analysis
  Security testing
  Inside  Out

“Application security”
  Works for COTS software
  Low expertise
  Protect installed software

from harm
  Protection against malicious

code
  Policy issues
  Outside  In

badness-ometer

© 2009 Cigital

Top 11 reasons why top 10 lists don’t work
1.  Executives don’t care about

technical bugs
2.  Too much focus on bugs
3.  Vulnerability lists help

auditors more than
developers

4.  One person’s bug is another
person’s yawner

5.  Using bug parade lists for
training leads to awareness
but does not educate.

6.  Bug lists change with the
prevailing technology winds

7.  Top ten lists mix levels
8.  Automated tools can find

bugs---let them
9.  Metrics built on top ten lists are

misleading
10.  When it comes to testing,

security requirements are more
important than vulnerability
lists.

11.  Ten is not enough.

http://www.informit.com/articles/article.aspx?p=1322398

© 2009 Cigital

BSIMM-Ten surprising things
1.  Bad metrics hurt
2.  Secure-by default

frameworks
3.  Nobody uses

WAFs
4.  QA can’t do

software security
5.  Evangelize over

audit

6.  ARA is hard
7.  Practitioners don’t

talk attacks
8.  Training is

advanced
9.  Pen testing is

diminishing
10.  Fuzz testing

  http://www.informit.com/articles/article.aspx?p=1315431

© 2009 Cigital

Attackers are Software People

© 2009 Cigital

Attackers do not distinguish bugs and flaws
  Both bugs and flaws

lead to vulnerabilities
that can be exploited

  Attackers write code to
break code

  Defenders are network
operations people
  Code?! What code?

© 2009 Cigital

The attacker’s toolkit
  The standard attacker’s toolkit has lots of (software

analysis) stuff
  Disassemblers and decompilers
  Binary scanners
  Control flow, data flow, and coverage tools
  APISPY32
  Breakpoint setters and monitors
  Buffer overflow kits
  Shell code, payloads (multi-platform)
  Rootkits (kernel, hardware)

© 2009 Cigital

Attacker’s toolkit: other miscellaneous tools
  Debuggers (user-mode)
  Kernel debuggers

  SoftIce
  Fault injection tools

  FUZZ
  Failure simulation tool
  Hailstorm
  Holodeck

  Boron tagging
  The “depends” tool
  Grammar rewriters

© 2009 Cigital

Is FUZZ good?
  Wisconsin academics invent

the notion of sending
random noise to UNIX
utilities
  Fuzz I: 1990
  Fuzz II: ten years later

  Fifteen years later, security
people hit on the same idea

  FUZZ can be useful
  SPIKE
  Peachfuzz
  Mangle (HTML)
  FileFuzz
  beStrorm
  Codenomicon

  White box testing is better

© 2009 Cigital

Breaking stuff is important
  Learning how to think like

an attacker is essential
(especially for good testing)

  Think hard about the
“can’ts” and “won’ts”

  Do not shy away from
teaching attacks
  Engineers learn from

stories of failure
  Testers must deeply

understand how things
break

© 2009 Cigital

Resources on security testing
  Building Secure Software

(Viega/McGraw)

  Writing Secure Code (Howard/
LeBlanc)

  How to Break Software
Security (Whittaker/Thompson)

  Web Security Testing
Cookbook (Hope/Walther)

© 2009 Cigital

Web Security Testing Cookbook

© 2009 Cigital

What it ain’t

© 2009 Cigital

What it IS
  Reference and job aid for web testers

  Exploratory testing
  Regression testing
  Automated testing
  Unit testing

  Starts really basic
  Ends rather complicated

© 2009 Cigital

Table of Contents
1.  Introduction
2.  Installing Free Tools
3.  Basic Observation
4.  Web-Oriented Data Encoding
5.  Tampering with Input
6.  Automated Bulk Scanning
7.  Automating Tasks with cURL
8.  Automating Tasks with

LibWWWPerl
9.  Seeking Design Flaws
10.   Attacking AJAX
11.   Manipulating Sessions
12.   Multifaceted Tests

© 2009 Cigital

Example: Login to eBay

  Series of
commands

  Build up state/
cookies

  Check for
username in output

${CURL} -s -L -A "${UA}" -c "${JAR}"\
 -b "${JAR}" -e ";auto” \
 -d MfcISAPICommand=SignInWelcome \
 -d siteid=0 -d co_partnerId=2 -d UsingSSL=1 \
 -d ru= -d pp= -d pa1= -d pa2= -d pa3= \
 -d i1=-1 -d pageType=-1 -d rtmData= \
 -d userid="${USER}" \
 -d pass="${PASS}" \
 -o "step-${step}.html" \
 "https://signin.ebay.com/ws/..."

if [$? = 0]; then
 step=$step+1
 echo -n "OK] [${step} "
 else
 echo "FAIL]"
 exit 1
 fi

© 2009 Cigital

Other topics
  LDAP injection
  Zip of death
  Billion laughs
  Pathological XML
  Malicious cookies

  All of these are
scripted

  All are repeatable
  All can be part of a

routine QA process

© 2009 Cigital

Stuff that Works for Cigital

© 2009 Cigital

Three pillars of software security
  Risk management framework
  Touchpoints
  Knowledge

© 2009 Cigital

Software security touchpoints

© 2009 Cigital

Touchpoint: Abuse cases
  Use cases formalize normative behavior (and

assume correct usage)
  Describing non-normative behavior is a good idea

  Prepare for abnormal behavior (attack)
  Misuse or abuse cases do this
  Uncover exceptional cases

  Leverage the fact that designers know more about
their system than potential attackers do

  Document explicitly what the software will do in
the face of illegitimate use

  Abuse cases are great
 for test planning

© 2009 Cigital

Touchpoint: Security testing
  Test security functionality

  Cover non-functional requirements
  Security software probing

  Risk-based testing
  Use architectural risk analysis results to drive scenario-

based testing
  Concentrate on what “you can’t do”
  Think like an attacker
  Informed red teaming

© 2009 Cigital

Touchpoint: Risk-based testing
  Identify areas of potential risk in the system

  Requirements
  Design
  Architecture

  Use abuse cases to drive testing according to risk
  Build attack and exploit scenarios based on identified risks
  Test risk conditions explicitly

  Example: Overly complex object-sharing system in Java Card

© 2009 Cigital

Touchpoint: Penetration testing
  A very good idea since software is bound in an

environment
  How does the complete system work in practice?

  Interaction with network security mechanisms
  Firewalls
  Applied cryptography

  Penetration testing should be driven by risks
uncovered throughout the lifecycle

  Not a silver bullet!

© 2009 Cigital

Always: External review
  Having outside eyes look at

your system is essential
  Designers and

developers naturally get
blinders on

  External just means
outside of the project

  This is knowledge
intensive

  Outside eyes make it easier
to “assume nothing”
  Find assumptions, make

them go away

  Red teaming is a weak form
of external review
  Penetration testing is too

often driven by
outsidein perspective

  External review must
include architecture
analysis

  Security expertise and
experience really helps

© 2009 Cigital

Where to Learn More

© 2009 Cigital

informIT & Justice League

  www.informIT.com
  No-nonsense monthly security

column by Gary McGraw

  www.cigital.com/justiceleague
  In-depth thought leadership

blog from the Cigital Principals
  Scott Matsumoto
  Gary McGraw
  Sammy Migues
  Craig Miller
  John Steven

© 2009 Cigital

IEEE Security & Privacy Magazine + 2 Podcasts

  www.cigital.com/silverbullet
  www.cigital.com/realitycheck

  Building Security In
  Software Security Best

Practices column edited by
John Steven

  www.computer.org/security/bsisub/

© 2009 Cigital

Software Security: the book
  How to DO software security

  Best practices
  Tools
  Knowledge

  Cornerstone of the Addison-
Wesley Software Security
Series

  www.swsec.com

© 2009 Cigital

For more
  Cigital’s Software Security

Group invents and delivers
Software Quality Management

  WE NEED GREAT PEOPLE

  See the Addison-Wesley
Software Security series

  Send e-mail: gem@cigital.com

“So now, when we face a choice between
adding features and resolving security issues,
we need to choose security.”

-Bill Gates

